CCXIX.-Anomalous Rotatory Dispersion from the Standpoint of the Drude Equation.

By Charles Edmund Wood and Sydney Diggary Nicholas.

Although the rotatory dispersion of ethyl and methyl tartrates has been investigated exhaustively (Lowry and Dickson, J., 1915, 107, 1173; Lowry and Abram, ibid., p. 1187; Patterson, J., 1916, 109, 1139, et seq.; Winther, Z. physikal Chem., 1902, 41, 177, etc.) both in the homogeneous condition and in solution, yet relatively little research has been done on the dispersion of the simple derivatives of these two esters. A series of derivatives was therefore prepared in order to see whether the anomalous dispersion shown by the parent esters persisted in the derived compounds, or whether the dispersion passed from anomaly to complexity or to simplicity in a definite manner in the two series; also, to gain further information on the relationship of dispersion to relative configuration and their interpretation in terms of the Drude equation.

Anomalous Rotatory Dispersion and Relative Configuration.

Examination of the rotatory dispersion curves for the compounds shows that (a) both inflexion and maxima are confined to the positive region of rotation, and (b) crossing of the axis occurs in one way only, viz., as the wave-length decreases so the rotation decreases, $d \alpha / d \lambda$. being always positive.

Fig. 1 shows that methyl d-tartrate and its monoacetyl, diacetyl (at $178 \cdot 3^{\circ}$ only), and monobenzoyl derivatives exhibit visual anomaly in the positive region of rotation, and further, when crossing of the axis occurs, $d \alpha / d \lambda$ is positive. The disposition of the dispersion curves for the dibenzoyl derivative is given on the diagram; they do not show visual anomaly.

Fig. 2 indicates that inflexion of the dispersion curves in the positive region of rotation was realised for the mono- and di-acetyl and monobenzoyl derivatives of ethyl tartrate; inflexion of the dispersion curves for the ester itself occurs at higher temperatures than shown in the diagram. Maxima occur in the positive region for ethyl tartrate and its mono- and di-acetyl and monobenzoyl derivatives. The diacetyl derivative, like the parent ester, shows crossing of the axis. The dispersion ourves for the dibenzoyl derivative, for the range of temperature and wave-length examined, are situated in the negative region. On the same diagram is indicated the disposition of the dispersion curves for the thionyltartaric and dichlorosuccinic esters.

Fig. 1.

The types of dispersion of the compounds examined are given below :

Methyl tartrate \qquad Dispersion.

Monoacetyl derivative... Anomalous Diacetyl derivative Anomalous Anomalous (at the higher temperature)
Monobenzoyl derivative Anomalous Dibenzoyl derivative ... Complex (negative region)

Dispersion.
Ethyl tartrate Anomalous Monoacetyl derivative Anomalous Diacetyl derivative ... Anomalous

Monobenzoyl derivative Anomalous Dibenzoyl derivative ... Complex (negative region)
Thionyl derivative ... $\left\{\begin{array}{l}\text { Simple in } \\ \text { region of } \\ \text { spectrum } \\ \text { examined }\end{array}\right.$

In general, the dispersions of the simple acetyl and benzoyl derivatives of the two series are closely related, but comparison of

Fig. 2.

λ.
Ethyl tartrate and certain derivatives.
the two diagrams shows that the crossing of the axis and, consequently, maxima are removed to a shorter wave-length in passing from methyl tartrate and its derivatives to ethyl tartrate and its
derivatives, a fact which is well illustrated by the diacetyl derivatives of the two series.

Lowry (J., 1915, 107, 1195), having proved conclusively the validity of the Drude equation, quotes inflexion, maxima, and crossing of the axis as visual criteria for anomalous dispersion, but this investigation and a survey of the literature indicate that the above three points are also criteria for relative configuration. Thus for d-tartaric acid and its derivatives the mode of crossing the axis is always the same, points of inflexion occur only in the positive region of rotation, and, in all cases, maxima are confined to the positive region.

The dispersion curves for methyl diacetyltartrate are of particular interest; they form a series of curves which approach the axis from the negative side with increasing temperature, and the curve obtained at $178 \cdot 3^{\circ}$ crosses the axis towards the red end of the spectrum. A solution of ethyl tartrate in carbon tetrachloride (Lowry and Dickson, loc. cit.) affords a similar case. The curves do not become asymptotic to the zero axis in the negative region.* It is hard to reconcile this phenomenon, which is not confined to these cases, with the founding of a general explanation of optical rotation on a Drude equation with the infra-red term omitted. Although quantitative measurements have justified such procedure, yet the theoretical significance is lost. The infra-red term is associated with the configuration, and should be regarded as the relative configuration term. For a compound of " d " configuration it is negative, and for a compound of " l " configuration positive. It is this term which prevents dispersion curves in the negative region, for a compound of relative configuration denoted by " d," becoming asymptotic to the zero axis in that region towards the red in the visible and non-visible region of the spectrum; and thus, by the influence of the infra-red term, the curve is drawn over the axis into the positive region.

In the case of a compound of " d " configuration in the positive region, no instance can be traced where intersection of the zero axis, $d \alpha / d \lambda$ being negative, occurs; the approach, as the curve passes into the red end of the spectrum, appears to be asymptotic in character either to the zero axis, or to an axis parallel to the zero axis in the positive region.

In cases where the dispersion curve does not actually pass over

[^0]into the negative region, its approach to the zero axis is a sufficient guide for relative configuration, provided that the approach is towards the blue end of the spectrum. Many instances are given in the two diagrams of experimental results (Figs. 1 and 2).

Methyl and ethyl dibenzoyltartrates, ethyl dichlorosuccinate and ethyl thionyltartrate have rotations removed from the axis on the negative side. The first two compounds have been obtained by simple chemical reactions not prone to give rise to a Walden inversion, hence their relative configuration is taken as " d." The configuration of dextrorotatory * dichlorosuccinic acid and its ethyl ester (for comparison of preparation and optical rotation, see Darzens, Compt. rend., 1912, 154, 1615; Holmberg, Svensk Kem. Tidsk., 1912) has been discussed by Clough (J., 1918, 113, 526), who, on the basis of the relationship between optically active α-aminoand α-hydroxy-acids, regards this acid as of relative configuration " l." The relative configuration of the thionyl ester, which is an intermediate product in the preparation of the dichloro-ester, is assumed to be " d."

Experiments with solvents failed to reduce the high rotation of the last two esters sufficiently for observations to be taken in the anomalous region. This is to be expected, for optically active compounds only exhibit great sensitiveness to both temperature and solvents near or in the region of anomalous rotatory dispersion.

Interpretation of Anomaly by the Drude Equation.

In the consideration of the Drude equation, R. W. Wood (" Physical Optics," p. 492), from theoretical considerations, indicates that the anomalous rotatory dispersion of tartaric acid is due to an infra-red lævorotatory electron and an ultra-violet lævorotatory electron. This view has been rejected by Lowry (Lowry and Cutter, J., 1925, 127, 604), who, from quantitative measurement, expresses the rotatory dispersion " as the sum of two simple partial rotations of which the characteristic frequencies are both in the ultra-violet region," the two partial rotations being of opposite sign. Lowry, however, admits the theoretical possibility of "spurious anomaly" in transparent media.

The view here put forward is that both explanations of the phenomenon are incomplete, and it is considered that anomaly is due to one or more rotations of electronic origin in the ultra-violet, and a rotation of molecular origin, due to atomic oscillations, in the infra-red.

[^1]The total rotation of the plane of polarisation being expressed in the usual way as a summation of terms,

$$
\alpha=\sum_{\overline{\lambda^{2}}} \frac{k}{-\lambda_{0}^{2}}
$$

each term, except the infra-red term, represents the contributary rotation due to ultra-violet electrons, active in rotating light. The infra-red term, however, represents rotation referred to molecular origin. Observations on selective reflexion and absorption have shown that characteristic frequencies in the ultra-violet arise from electrons, whereas those in the infra-red, which in many cases pass into the region of short electric-discharge waves, are referred to atomic oscillations.* The contributary rotation due to this infra-red term, although small in the visible region, is definite, and, being of molecular origin, gives rise to dextrorotatory or lævorotatory dispersion according as the relative configuration is " d " or " l." The importance of this configuration term as a fundamental part of the Drude equation is considered below.

Case 1. The infra-red term contributes a dextrorotatory dispersion which is of lævorotatory molecular origin, and which manifests itself in the near infra-red through the oscillations of the constituent atoms (or atomic groups), \dagger and the ultra-violet term contributes a dextrorotatory dispersion of a dextrorotatory electron (or system of electrons) :

$$
\alpha=\frac{k_{1}}{\lambda^{2}-\lambda_{1}^{2}}-\frac{k_{2}}{\lambda^{2}-\lambda_{2}^{2}}
$$

The condition is shown diagrammatically in Fig. 3, the upper set of curves showing the two simple rotations, and the lower the resultant curve. The dotted lines \ddagger represent the unrealisable regions of the spectrum in the red, infra-red, and ultra-violet.

The realisable curve shows no anomaly in the visible spectrum, for minima in the positive region of rotation have not been realised.

* Compare Haas, "Introduction to Theoretical Physics," Vol. ii, 1925, section on " General theory of spectra and of atomic structure"; Lecomte, "Contribution à l'étude de l'absorption des rayons infra-rouges par les composés organiques," La Lino-Générale, Paris; Baly, " Spectroscopy," Vol. I, p. 217 (1927); Coblentz, "Investigations of infra-red spectra," Carnegie Institution of Washington, 1905, 35, 117.
\dagger Compare Bjerrum's theory; also Lorentz, "Lectures on Theoretical Physics," Vol. ii, p. 395 (1927).
\ddagger The dotted portion of the lower curves for longer wave-lengths in Figs. 3 and 4, if realisable, would represent those parts where the infra-red term is no longer functioning as a constant, the ultra-violet term at the same time passing to a constant value. The complete curve represents, according to the part considered, either simplicity, complexity, or anomaly.

The rotatory dispersion is always positive; the curve tends to become asymptotic and not to cut the axis. Even Ingersoll (Physical Rev., 1917, 9, No. 4, 257), who investigated the infra-red, did not realise the asymptotic portion of the dispersion curve.

The rotation due to the dextrorotatory electron dies down with increasing wave-length, whilst that due to molecular rotation

increases in effect. No apparent deviation from simplicity occurs in the visible spectrum, for

$$
\alpha=\frac{k_{1}}{\lambda^{2}-\lambda_{1}{ }^{2}}+\frac{k_{2}}{\lambda_{2}{ }^{2}},
$$

where $k_{2} / \lambda_{2}{ }^{2}$ is a constant representing an axis $k_{2} / \lambda_{2}{ }^{2}$ above the zero axis to which the dispersion curve would ultimately tend to become asymptotic.

Case 2. The infra-red term contributes a dextrorotatory dispersion as before, but the ultra-violet term contributes a lævorotatory dispersion due to a lævorotatory electron (or system of electrons) :

$$
\alpha=\frac{-\frac{k_{1}}{\lambda^{2}-\lambda_{1} 2}-\frac{k_{2}}{\lambda^{2}-\lambda_{2}^{2}}}{\text { (ultra-violet) }} \text { (infra-red) }
$$

This condition is shown in Fig. 4. The effect due to the infra-red term is slight, and departure from simplicity cannot be detected. The constant $k_{2} / \lambda_{2}{ }^{2}$ represents an axis parallel to the zero axis in the positive region; it is the axis to which the curve tends to become
asymptotic and which it finally cuts in the unrealisable region on proceeding up to the band.

The constant in both cases is positive and is the " d " configuration constant. The above two cases represent simplicity in the positive and negative regions, respectively.

The two compounds mentioned below are examples of Case 2. They were found to be simple over a wide range of temperature. Under the experimental conditions the small constant infra-red contribution could not be differentiated. The rotational constant

for the thionyl ester decreases numerically with increase of temperature, but the constant for the dichlorosuccinate passes through a maximum. Very little variation of $\lambda_{0}{ }^{2}$ was observed with temperature, the tendency (except at 145.4° for the thionyl ester) being a slight movement of the ultra-violet absorption band towards a greater wave-length with increase of temperature.

Ethyl thionyltartrate.		
Temp.	$\lambda_{0}{ }^{2}$.	k.
$13 \cdot 1^{\circ}$	0.04264	56.18
20.3	0.04350	55.46
42.3	0.04356	54.09
56.9	0.04326	53.33
82.6	0.04448	51.96
116.9	0.04452	51.08
125.2	0.04440	50.56
145.4	0.04318	50.28

Ethyl dichlorosuccinate.

Temp.	$\lambda_{0}{ }^{2}$.	k.
12.7°	0.04992	12.61
22.6	0.04950	12.66
41.4	0.04979	12.67
62.4	0.04991	12.51
87.0	0.05141	12.13
104.1	0.05165	11.88

The introduction of another ultra-violet term of the same sign into equations under Cases 1 and 2 gives the condition for complexity. The dispersion curve in the visible region now represents the summation of three simple curves, although the contribution by the infra-red term may not be detectable quantitatively. The dispersion curves in the negative and positive regions, respectively, take corresponding paths in the infra-red, via an axis $k / \lambda_{2}{ }^{2}$ similar to those taken by the curves expressing simplicity. This directive inolecular influence, though of little magnitude in the visible region, dominates the final direction of the dispersion curve.

Figs. 3 and 4 illustrate complexity when AB and CD represent the summation of two simple electronic curves of like sign, together with the small molecular contribution.

The introduction of an ultra-violet term of opposite sign into Cases 1 and 2 gives rise to anomaly; the positive term must, however, be associated with the high-frequency constant. The compounded curve produces under certain conditions the three cases of visible anomaly. In all cases the curves eventually take a path, via the axis $k_{2} / \lambda_{2}{ }^{2}$, up to the band.
Curves wholly in the positive region never touch the zero axis. Curves in the negative region cross the zero axis.

Anomaly is illustrated by Fig. 5, EF being the compounded curve obtained by the introduction of a term of opposite sign. This curve shows that crossing of the zero axis occurs in one way only, $d \alpha / d \lambda$ being positive, and that anomaly (maxima and inflexion) is confined to the positive region. Curves crossing the axis ($d x / d \lambda$ negative) or showing maxima or inflexion in the negative region could only arise from a compound of " l " configuration, for the electronic and molecular dispersion curves form one continuous function, and reversal of the electronic part implies reversal of the molecular portion of the dispersion curve. Such curves belong to a general type of curve represented by the mirror image of the curve in Fig. 5.

Although quantitative measurements show that the infra-red term is practically negligible in the visible region, yet its importance must not be under-rated, for it determines the path to the infra-red band. This restriction to a particular path places upon the occurrence of anomaly those limitations which are such valuable criteria for the determination of relative configuration.
Methyl diacetyltartrate is an interesting example of visual anomaly occurring towards the red end of the spectrum. From $107 \cdot 3^{\circ}$ to $171 \cdot 5^{\circ}$, inclusive, the dispersion curves lie wholly in the negative region, whilst at 178.3° crossing of the axis from the negative to the positive region takes place between $\lambda 5893$ and
$\lambda 5590$. Increase of temperature has caused the crossing to move from infra-red into the visible region; the approach to the zero axis of the curves in the negative region is not asymptotic in character.

The further movement of crossing from the visible spectrum into the ultra-violet is shown by methyl monobenzoyltartrate :

Temp.	$22 \cdot 0^{\circ}$	$57 \cdot 0^{\circ}$	$80 \cdot 8^{\circ}$
Crossing of zero axis at $\lambda .$.	$4861-4678$	$4678-4455$	$4455-4359$

Fig. 5.

For higher temperatures the curves lie wholly in the positive region, the crossing having moved into the ultra-violet. Simultaneously with the movement of the crossing there occur the development and then the movement of maxima (see Experimental). Crossing and maxima form part of a continuous curve, the maxima always occurring at a greater wave-length than the crossing.

Lowry (J., 1915, 107, 1195) has discussed the limiting condition for anomalous dispersion on the assumption that an infra-red band is absent. From the foregoing considerations it follows that the limiting condition requires modification, viz., the high-frequency term may have the rotation constant k not only greater than but
also equal to k_{1}, the rotational constant of the low-frequency ultraviolet term. When $k=k_{1}$ the curve may cut the zero axis in the visible region, for the contribution due to the molecular rotation, though small, is of appreciable magnitude. The importance of the infra-red term is that it prevents such dispersion curves becoming asymptotic to the zero axis.
In all cases of anomaly the smaller ultra-violet dispersion constant (high frequency), regardless of the value of k, is associated with the positive ultra-violet term for a compound of " d " configuration, and with the negative ultra-violet term for a compound of " l " configuration. Reference to the sign of the infra-red term is only necessary for determining configuration in the cases of simplicity and complexity.

The Infra-red Term and the Relative Configuration of Quartz.

Quartz affords an interesting example, since the infra-red term has been included in the equation expressing its dispersion (Lowry, Phil. Trans., 1913, A, 212, 261). The term is positive for lefthanded quartz; this variety is accordingly configuratively related to l-tartaric acid.

The configuration can be deduced, however, without considering the infra-red term; the high-frequency constant (omitted on account of its small magnitude) is associated with the negative ultra-violet term. Similar reasoning, from data given by Lowry and Cutter (J., 1925, 127, 604) for d-camphor, shows that it is configuratively related to left-handed quartz.

The wave-length of the "Reststrahlen" from quartz, as determined by Porter (Astrophys. J., 1905, 22, 227), is 8.28μ; Rubens and Nichols (Ann. Physik, 1897, 60, 418) found that reflexion took place at three points of the spectrum, $8.5 \mu, 9.02 \mu$, and 20.75μ; Lowry, in the application of the Drude equation to the rotatory power of quartz, gives $(8.84)^{2} \mu$ as the dispersion constant in the infra-red term and states that "the infra-red absorption is an essential factor in determining the optical rotation in quartz both in the infra-red and in the visible region of the spectrum." Waves whose frequencies differ little from a characteristic frequency are strongly reflected and absorbed; further, infra-red frequencies are referred to atomic oscillations.

Physical Interpretation of the Infra-red Term and Anomaly.

Thomson (Phil. Mag., 1920, 40, 720) has deduced a general expression for the rotation of the plane of polarisation, due to the scattering of light by electrons, on the assumptions that (1) the whole molecule rotates as a rigid body, and (2) there is no displace-
ment of the electrons relative to the atoms in the molecule. He shows that molecules representing enantiomorphs rotate in opposite directions, and calculates the contribution, due to the rotation of the molecule, to the optical rotation. This calculated rotation is less than 12^{\prime} specific rotation per cm ., thus the molecular contribution is only a small part of the optical rotation generally observed. The contribution to the rotation of quartz by the infrared term for $\lambda 5896$ is $10 \cdot 3^{\prime}$ per mm. (compare Lowry, loc. cit.).

Since the whole molecule, rotating as a rigid body, does not give sufficient movement to account for the rotation produced by optically active compounds, Thomson regards the molecule as made up, of two parts: (1) the atomic tetrahedron formed by the atoms or groups round the asymmetric carbon atom, and (2) the electronic tetrahedron formed by the structural electrons round the asymmetric carbon atom. The displacement of the atomic tetrahedron in response to light waves in the visible spectrum will be small in comparison with that of the much lighter tetrahedral arrangement of the electrons.

A system of electrons, α, β, γ, and δ, is considered, each electron being situated at the corner of a tetrahedron. If the restoring forces for α and β are large compared with those for γ and δ, the two electrons γ and δ would rotate round the axis $\alpha \beta$ when acted on by light. The rotation due to this single electronic tetrahedron is found to give values comparable with the rotation given by optically active compounds. The volume of the tetrahedron, which measures the optical rotation of a single molecule, vanishes in the following cases: (1) $\gamma \delta$ is parallel to $\alpha \beta$; (2) $\gamma \delta$ intersects $\alpha \beta$; (3) $\gamma \delta$ is at right angles to $\alpha \beta$ (regular tetrahedron). A shift in the position of one or both of the electrons $\gamma \delta$ might change the sign of the optical rotation produced by the molecule. A compound, by temperature or solvent action, may change its sign of rotation owing to electronic displacements, but not the sign of the contributary molecular rotation unless change of configuration takes place.

The expression which Thomson obtains for the rotations of each tetrahedron, electronic and atomic, we regard as representing the ultra-violet and infra-red terms, respectively, of the Drude equation. An extension of this view, considering eight electrons instead of four round the asymmetric carbon atom, would give rise to two electronic tetrahedra and would afford a physical insight into the meaning of complexity and anomaly, as expressed by the Drude equation. The displacement of the electronic tetrahedra in opposite directions would give rise to anomaly; in the same direction, to complexity; in the same direction and acting as a single tetra-
hedron, to simplicity. On this view, one asymmetric centre in a molecule is sufficient to account for the various classes of dispersion.

Tschugaeff (Trans. Faraday Soc., 1914, 10, 35) states that " it is by no means necessary that the electrons in the four radicals and in the central atom should rotate in the same direction. Consequently it seems to be possible that certain bodies containing but one asymmetric carbon atom can exhibit anomalous rotatory dispersion."

Drude (" Optics," p. 415) states that "in general every active substance must show anomalous * rotatory dispersion in certain regions of vibration, but these regions do not necessarily lie within the limits of the vibrations which can be produced experimentally," and this statement occurs immediately after reference to cases of anomalous rotatory dispersion mentioned by Landolt (" Das optische Drehungsvermögen '").

It is important to summarise the classes of anomaly :
(1) True anomalous rotatory dispersion occurring at the crossing of an absorption band which is of optically active electronic origin.
(2) Anomalous rotatory dispersion due to the superposition of two simple rotations of opposite sign, the characteristic frequencies being both in the ultra-violet.
(3) Spurious anomalous rotatory dispersion, i.e., dispersion occurring between two bands.
(4) Type discussed in paper on co-ordination compounds (this vol., p. 1727).

Discussion of Different Types of Anomalous Rotatory Dispersion.

The view that a single asymmetric centre can give rise to anomaly makes class (f) (ii) (Lowry and Cutter, loc. cit.) (" existence of two natural frequencies in a single molecule") a fundamental class. The recognition of this class is regarded by the above authors as a matter of pure speculation, in spite of the increasing number of cases in which a single asymmetric centre shows anomaly, this conclusion being based on the fact that there is no experimental proof of a single asymmetric centre, having two frequencies, giving rise to two absorption bands.

Such a demand is unjustifiable, since no case is known (even when more than one asymmetric centre is in a single molecule), where two bands, corresponding to a high and a low frequency and satisfying the demands of the Drude equation, have been located experimentally. In those cases in which the low-frequency band has actually been determined, the high-frequency band, in the case of anomalous or complex compounds, has been inferred. Accord-

[^2]ingly, the experimental determination of the low-frequency and the inference of the presence of the high-frequency band for a single molecule with one asymmetric centre, is sufficient (and the only available) proof to satisfy the demand.
(a) $d-\gamma$-Nonyl nitrite (Pickard and Hunter, J., 1923, 123, 434) with absorption band $\lambda 3670-3720$, though not anomalous, has a single asymmetric centre which possesses two natural frequencies, giving rise to two bands.
(b) For potassium chromium oxalate, $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \mathrm{K}_{3}$ (Jaeger and Thomas, Proc. K. Akad. Wetensch. Amsterdam, 1919, 21, 693), the molecular rotation passes through a maximum about $\lambda 5200$ and through a minimum about $\lambda 5700$ in passing through the band. The compound thereafter shows visual anomaly to the right of the band, viz., on the long wave-length side of the band.

Asymmetric centres of the same relative configuration occurring in a single molecule give rise to the same phenomenon as class (f) (ii) the dispersion exhibited being a summation effect; instances are methyl and ethyl d-tartrates and l - β-octyl oxalate (Lowry and Richards, J., 1924, 125, 1593). The bands are far removed in the ultra-violet and have not been determined experimentally, but the dispersion has been measured and the results expressed by equations involving two terms of opposite sign (Lowry and collaborators, locc. cit.). In these cases the two centres of activity are of identical type. Methyl and ethyl diacetyl-d-tartrates are further examples since they show visual anomaly. Methyl and ethyl monoacetyland monobenzoyl-tartrates are examples of compounds having two centres of " d " configuration with different rotatory power, showing visual anomaly.

When the two asymmetric centres are of different configuration, the resulting anomaly expresses the configuration of the dominant centre. When more than two centres are present, the dispersion curve represents a summation effect.
d-sec.-Butyl d-lactate (Wood, Such, and Scarf, J., 1926, 1928) exhibits anomaly in the negative region, the dominant centre being the lactate radical. A case of historical interest, though the radicals involved are both of the same relative configuration (" l "), is menthyl camphor- β-sulphonate, the dispersion of which was investigated by Tschugaeff (Ber., 1911, 44, 2023). Menthyl triphenylacetate (idem, ibid., 1912, 45, 2759) is anomalous in the negative region of rotation ; camphor- β-sulphonic acid is potentially anomalous (Lowry, J., 1925, 127, 1503), the high-frequency term being negative. The ester menthyl camphor- β-sulphonate is anomalous, and, as would be expected, in the negative region (" l " configuration).

For over ten years, it has been the convention to assign compounds containing one asymmetric centre and compounds containing asymmetric centres of identical type, showing anomaly, to class (c): "Formation of two molecular types from one optically active compound." The origin of this class can be traced to the view, put forward by Arndtsen in 1858, explaining the anomalous rotatory dispersion of solutions of d-tartaric acid. The present tendency, however, is to seek a cause for a partial rotation of opposite sign in the molecule itself. Such centres of opposite sign have been assumed, on the theory that an unsaturated group in an asymmetric molecule may acquire an induced asymmetry [type (e), " induced asymmetry in unsaturated molecules," Lowry, loc. cit.].
The necessity for seeking, either by isomeric change or by induced asymmetry, a centre giving rise to an opposite partial rotation is due to the non-recognition that a single asymmetric centre can give rise to two electronic components (two electronic tetrahedra) which may contribute rotations of the same or opposite sign.
The carbonyl group in camphor is considered optically active by induced asymmetry, and the rotation contributed by this hypothetical centre is 71.05° (d-camphor in acetone, $\lambda 5893$). This is the contribution due to the low-frequency term, whereas the highfrequency term only contributes 20.54°. A theory which attaches importance to a hypothetical centre needs scrutiny. More serious than the assumption of a rotational value is the point that the carbonyl group has been considered asymmetric in order that it might be a decisive factor with respect to determining the relative configuration of the molecule.

The carbonyl group need not be regarded as an asymmetric centre but rather as causing a deflecting and disturbing action on the electronic system round the asymmetric centre. The nearer the carbonyl group is to the asymmetric centre the greater will be the effect on the electronic tetrahedra (compare Tschugaeff's views on rotatory dispersion, Trans. Fartday Soc., loc. cit., p. 35, with regard to the influence of the electrons attached to the radicals and the asymmetric carbon atom).

Quartz has been placed provisionally in class (f) (i) (" Crystals with two natural frequencies "), since class (f) (ii) has been discarded. On the view here expressed, quartz falls naturally into this class. Thomson (loc. cit.) has applied the same general equation to quartz as to organic compounds. Molecules, in the crystalline condition, can be optically active, owing to distortion, although inactive when fused or in solution. This distortion will be reflected in the arrangement of a system of electrons round the silicon atoms, and anomaly may result.

In β-quartz, Bragg and Gibbs (Proc. Roy. Soc., 1925, 109, 405) find that the oxygen atoms are placed almost exactly in a tetrahedral arrangement round the silicon atom, and they consider that silicon, being a quadrivalent atom, is probably striving for such an arrangement. In addition, Gibbs (ibid., 1926, 110, 443) has pointed out that, in passing from β - to α-quartz, the tetrahedrally arranged oxygens have been twisted and slightly distorted with consequent loss of symmetry, which is in accordance with the rotation data (for sodium light) :

The explanation offered of the pyro- and piezo-electric effects of quartz by the suggested structure rests on the assumption of electric doublets, one corresponding to each valency. This is in harmony with the assumption that the eight structural electrons round the silicon atom form two tetrahedral arrangements.

Experimental.

Ethyl Tartrate.-The ester was prepared by the continuous esterification process (Aston and Frankland, J., 1901, 79, 511) and fractionated ten times in a vacuum. After the seventh distillation the ester exhibited a transient yellow colour and the distillates in the subsequent fractionations behaved similarly. B. p. $155-156^{\circ} / 15$ mm . Rotations were taken in a $3-\mathrm{dcm}$. tube.

Densities determined :

Ethyl Monoacetyltartrate.--This derivative was prepared by a modification of the method given by Patterson (J., 1900, 77, 1099). Acetyl chloride (14 g. ; slightly less than the calculated amount), in three times its volume of benzene, was added 1 c.c. at a time to 40 g . of ethyl tartrate dissolved in 30 c.c. of benzene. After each addition the mixture was shaken vigorously and heated to 80° until hydrogen chloride ceased to be evolved, then cooled to ordinary temperature, and the process repeated. After all the acetyl chloride had been added the benzene was removed, the residue distilled under diminished pressure, and the distillate collected at $165-170^{\circ} / 15 \mathrm{~mm}$. The distillate was shaken with 5 c.c. of water and separated. This was repeated eight times in order to remove ethyl tartrate. The residual oil was dissolved in a large volume of water and cooled to 0°; the ethyl diacetyltartrate which separated was filtered off and the filtrate extracted with chloroform. The extract was dehydrated over anhydrous sodium sulphate and the solvent removed at the ordinary temperature. The above purification process was repeated three times and the ester gave $[\alpha]_{1}^{132^{20}}+$ $12 \cdot 41^{\circ}$ (Patterson gives $[\alpha]_{D^{31} \cdot 2^{\circ}}+11 \cdot 60^{\circ}$). The rotation remained unchanged after repetition of the purification process.

Estimation of the acetyl group by the method of Sudborough and Thomas (J., 1905, 87, 1752) gave $17 \cdot 2 \%$ (Calc.: 17.34) (Found: $\mathrm{C}, 48.28 ; \mathrm{H}, 6.6$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{7}$: C, $48.37 ; \mathrm{H}, 6.5 \%$). The rotations were taken through a 2 -dcin. length, except at the highest temperature for which a $1-\mathrm{dcm}$. tube was employed. The ester exhibits anomaly; the temperature-rotation curves intersect. Rotations taken above 100° indicated decomposition of the compound.
Densities determined :

t°		$14 \cdot 3$	34.5	46.5	56.6	90.7	$94 \cdot 5$
d_{40}^{*}	$1 \cdot 1876$	$1 \cdot 1676$	$1 \cdot 1554$	$1 \cdot 1456$	1-1118	$1 \cdot 1078$
	$\begin{aligned} & d_{4_{4}^{17 \cdot 5^{0}}}^{==} \\ & 1 \cdot 1845 . \end{aligned}$	$\begin{aligned} & d_{4}^{255^{\circ}}{ }^{\circ}= \\ & 1 \cdot 1768 . \end{aligned}$	$\begin{aligned} & d_{!}^{29 \cdot 5^{2}}= \\ & 1 \cdot 1724 . \end{aligned}$	$\begin{aligned} & d_{+5}^{4+5^{\circ}}= \\ & 1 \cdot 1576 . \end{aligned}$	$\begin{aligned} & d_{4}^{59 \cdot 6^{\circ}}= \\ & 1 \cdot 1426 \end{aligned}$	$\begin{aligned} & d_{4^{76 \cdot 8^{\circ}}}^{d^{2}}== \\ & 1 \cdot 125 . \end{aligned}$	$\begin{aligned} & d_{t^{94} \cdot 5^{\circ}}^{=} \\ & 1 \cdot 1078 \end{aligned}$
λ.	$[a]_{\lambda}^{1-5}{ }^{\text {c }}$.	$[a]_{\lambda}^{25 \cdot 1^{\circ}}$.	$[a]_{\lambda}^{98 \cdot 5^{\circ}}$.	$[a]_{\lambda}^{4+5^{\circ}}$.	$[a]_{\lambda}^{59 \cdot 6^{6}}$.	$[a]_{\lambda}^{76 \cdot 8^{\circ}}$.	$[a]_{\lambda}^{94+55^{\circ}}$.
6708	$+8.30^{\circ}$	$8.61{ }^{\circ}$	$8.82{ }^{\circ}$	$9.45{ }^{\circ}$	10.08°	10.82°	$11.61{ }^{\circ}$
6563	$8 \cdot 62$	$8 \cdot 95$	$9 \cdot 15$	9.79	10.47	11.26	$12 \cdot 09$
6438	8.95	$9 \cdot 27$	$9 \cdot 48$	i0.13	10.79	11.62	12.52
6152	$9 \cdot 46$	9•84	10.07	10.83	11.59	12.52	13.52
5893	$9 \cdot 82$	$10 \cdot 27$	10.51	11.41	$12 \cdot 31$	13.35	$14 \cdot 46$
5590	$10 \cdot 19$	10.70	10.99	12.01	13.03	14.23	$15 \cdot 50$
5461	$10 \cdot 39$	10.90	11.22	$12 \cdot 23$	$13 \cdot 30$	14.60	15.96
5324	$10 \cdot 46$	11.02	11.33	$12 \cdot 47$	$13 \cdot 59$	14.94	16.40
5086	$10 \cdot 44$	11.06	11.44	12.68	13.97	$15 \cdot 48$	17.08
4861	$10 \cdot 26$	10.95	11.31	12.68	14-11	$15 \cdot 76$	17.49
4678	$9 \cdot 85$	10.57	10.97	12.46	13.97	15.76	$17 \cdot 67$
4455	8.87	$9 \cdot 68$	10.12	11.81	13.55	$15 \cdot 61$	17.78
4359	8.25	$9 \cdot 12$	$9 \cdot 62$	11.44	$13 \cdot 29$	$15 \cdot 45$	17.71

Ethyl Diacetyltartrate.-This ester, prepared by the method of McCrae and Patterson (J., 1900, 77, 1098), distilled at $163^{\circ} / 10-$ 11 mm . It was fractionated three times and recrystallised from aqueous alcohol five times. Further distillation and recrystallisation caused no change in rotation (Found: C, 49.56 ; H, $6 \cdot 29$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{8}$: $\mathrm{C}, 49 \cdot 66 ; \mathrm{H}, 6 \cdot 21 \%$). The compound is anomalous; the temperature-rotation curves intersect. The rotation was found to be slightly higher than the values given by the above authors. Rotations were taken in a l-dcm. tube.

	$\mathrm{a}_{19}^{67} 6^{\circ}$.	$[a]_{\mathrm{D}}^{77^{6} 6^{\circ}}$.	M. p.
McCrae and Patterson give	$+5 \cdot 28$	$4 \cdot 75$	$67-68^{\circ}$
The authors find	$5 \cdot 44$	$4 \cdot 85$	67.7° (corr

Densities determined :

t°		66	116		$149 \cdot 9$	$182 \cdot 4$
$d_{4^{\prime}}{ }^{\circ}$		$1 \cdot 114$		627	1.0274	0.9934
	$d^{747^{4} 1^{\circ}}=$			$d_{4^{\circ}}^{1222^{\circ}}=$		$d_{4^{2} 2^{2} 8^{\circ}}=$
	1-1059.	1.0920.	$1 \cdot 0779$.	$1 \cdot 0562$.	1.0350.	$1 \cdot 0139$.
λ.	$[a]_{\lambda}^{741^{\circ}}$.	$[a]_{\lambda}^{875^{7} 5^{\circ}}$.	$[a]_{\lambda}^{10173^{\circ}}$.	$[a]_{\lambda}^{12222^{\circ}}$.	$[a]_{\lambda}^{1+2 \cdot 3^{\circ}}$.	$[a]_{\lambda}^{162 \cdot 8^{\circ}}$.
${ }^{6} 708$	$+4.67^{\circ}$	$5 \cdot 10^{\circ}$	$5 \cdot 62^{\circ}$	$6.58{ }^{\circ}$	$7.61{ }^{\circ}$	$8.61{ }^{\circ}$
6563	$4 \cdot 78$	$5 \cdot 26$	$5 \cdot 81$	6.80	$7 \cdot 92$	8.94
6364	$4 \cdot 93$	$5 \cdot 44$	$6 \cdot 03$	$7 \cdot 12$	$8 \cdot 27$	$9 \cdot 39$
6152	$5 \cdot 04$	$5 \cdot 57$	$6 \cdot 22$	$7 \cdot 43$	$8 \cdot 69$	9.91
5893	$5 \cdot 13$	$5 \cdot 74$	$6 \cdot 48$	$7 \cdot 80$	$9 \cdot 26$	10.65
5590	$5 \cdot 08$	$5 \cdot 83$	$6 \cdot 68$	$8 \cdot 20$	$9 \cdot 88$	11.47
5461	$5 \cdot 01$	$5 \cdot 76$	6.70	$8 \cdot 36$	$10 \cdot 16$	11.84
5324	$4 \cdot 85$	$5 \cdot 68$	$6 \cdot 68$	$8 \cdot 44$	10.39	$12 \cdot 18$
5086	$4 \cdot 29$	$5 \cdot 39$	$6 \cdot 47$	$8 \cdot 44$	$10 \cdot 67$	12.75
4861	3.51	$4 \cdot 81$	6.05	$8 \cdot 23$	$10 \cdot 62$	$13 \cdot 21$
4678	$2 \cdot 64$	$3 \cdot 96$	$5 \cdot 46$	7.92	10.50	$13 \cdot 39$
4359	$0 \cdot 09$	$1 \cdot 74$	$3 \cdot 65$	$6 \cdot 76$	$9 \cdot 93$	13.08

Ethyl Monobenzoyltartrate.-This ester was prepared by a modification of Frankland and McCrae's method (J., 1898, 73, 307). To 40 g . of anhydrous ethyl tartrate, heated and mechanically stirred in an oil-bath ($130-135^{\circ}$), 19 g . of freshly distilled benzoyl chloride were added, drop by drop, during 2 hours. The purification was carried out in accordance with their method, except that anhydrous sodium sulphate was used in place of potassium carbonate as drying agent. The compound was recrystallised four times from light petroleum (b. p. $40-60^{\circ}$); yield 24 g . (Found: $\mathrm{C}, 57.93 ; \mathrm{H}, 5.87$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{7}$: C, $58.04 ; \mathrm{H}, 5.83 \%$); m. p. $66 \cdot 2^{\circ}$ (corr.) ; $[\alpha .]_{D_{0}^{\circ}} 19 \cdot 13^{\circ}$; $[\alpha]_{D}^{133^{\circ}} 16 \cdot 68^{\circ}$ (compare Frankland and McCrae: yield, 23 g . from 60 g . of ester; m. p. $66-66.5^{\circ}$; $\left.[\alpha]_{\mathrm{D}}^{30^{\circ}} 20 \cdot 71^{\circ} ;[\alpha]_{s^{\circ}}^{130^{\circ}} 16 \cdot 36^{\circ}\right)$. The ester exhibits anomalous rotatory dispersion, and the temperature-rotation curves for short wavelengths intersect. Rotations relate to a l-dem. column.

Densities determined:

t°		$28 \cdot 6$	$78 \cdot 0$		$124 \cdot 6$	161.9		$192 \cdot 0$
$d_{1^{\prime *}}{ }^{\circ}$		$1 \cdot 1943$		489	$1 \cdot 1061$			1.0424
	$d_{4^{\circ}}^{28} 6^{\circ}=$	$d^{19}{ }^{19} 0^{\circ}{ }^{\circ}=$	$d^{67 \cdot 7^{\circ}}=$	$d_{4^{8}}^{85 \cdot 1^{\circ}}=$	$d^{103}{ }^{109^{\circ}}=$	$d_{4}^{124 \cdot 7^{\circ}}=$	$d_{4^{1+2}}^{1+8^{\circ}}=$	$d_{\left.4^{160}\right]^{\circ}}=$
	1-1943.	$1 \cdot 1754$.	$1 \cdot 1582$.	$1 \cdot 1423$.	$1 \cdot 1251$.	1-1060.	1.0891.	1.0734
λ.	$[a]_{\lambda}^{2 s \cdot 8^{\circ}}$.	$[a]_{\lambda}^{49 \cdot 0^{\circ}}$.	$[a]_{\lambda}^{887} 7^{\circ}$.	$[a]_{\lambda}^{85 \cdot 1^{\circ}}$.	$[a]_{\lambda}^{1039}{ }^{10}$.	$[a]_{\lambda}^{124 \cdot 7^{\circ}}$.	$[a]_{\lambda}^{142 \cdot 8^{\circ}}$.	$[a]_{\lambda}^{1601^{\circ}}$.
6708	$+15.52^{\circ}$	$15 \cdot 30^{\circ}$	$14.93{ }^{\circ}$	14.62°	$14 \cdot 23^{\circ}$	$13 \cdot 70^{\circ}$	13.29°	12.79°
6563	$16 \cdot 11$	$15 \cdot 88$	$15 \cdot 50$	$15 \cdot 15$	$14 \cdot 78$	$14 \cdot 25$	$13 \cdot 83$	$13 \cdot 34$
6364	$16 \cdot 90$	$16 \cdot 69$	$16 \cdot 33$	$15 \cdot 95$	15.55	$15 \cdot 03$	$14 \cdot 61$	$14 \cdot 11$
6152	$17 \cdot 89$	$17 \cdot 63$	17-24	16.82	$16 \cdot 43$	$15 \cdot 86$	$15 \cdot 39$	$14 \cdot 90$
5893	$19 \cdot 10$	18.81	$18 \cdot 42$	$17 \cdot 98$	$17 \cdot 52$	16.94	$16 \cdot 46$	15.93
5590	$20 \cdot 57$	$20 \cdot 26$	19.84	$19 \cdot 43$	18.93	$18 \cdot 37$	$17 \cdot 85$	$17 \cdot 28$
5461	21.19	20.87	$20 \cdot 47$	$20 \cdot 01$	$19 \cdot 53$	18.94	$18 \cdot 42$	$17 \cdot 82$
5324	21.81	$21 \cdot 48$	21.06	$20 \cdot 67$	$20 \cdot 19$	$19 \cdot 57$	$19 \cdot 04$	$18 \cdot 38$
5086	$22 \cdot 68$	$22 \cdot 45$	$22 \cdot 03$	$21 \cdot 66$	$21 \cdot 27$	$20 \cdot 60$	19.95	$19 \cdot 37$
4678	$23 \cdot 42$	$23 \cdot 43$	$23 \cdot 24$	$22 \cdot 98$	$22 \cdot 62$	22.01	21.43	$20 \cdot 67$
4472	$23 \cdot 02$	$23 \cdot 29$	$23 \cdot 33$	$23 \cdot 24$	$23 \cdot 02$	$22 \cdot 47$	21.89	$21 \cdot 17$
4359	$22 \cdot 48$	$22 \cdot 91$	23-10	$23 \cdot 18$	23.09	$22 \cdot 59$	$22 \cdot 03$	$21 \cdot 31$

Ethyl Dibenzoyltartrate.-This ester was prepared by the method of Frankland and Wharton (J., 1896, 69, 1583), and after it had stood for a few days in a vacuum desiccator crystals began to form. When crystallisation was almost complete, the mass was dissolved in absolute alcohol, allowed to stand, and then seeded. The major part of the ester then crystallised over-night, and was recrystallised eight times from absolute alcohol (Found: C, 63.80; H, 5•40. Calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{8}$: C, $63.73 ; \mathrm{H}, 5 \cdot 36 \%$) ; m. p. $63 \cdot 5^{\circ}$ (corr.); $[\alpha] 8^{18^{\circ}}-59 \cdot 30^{\circ}$ (Frankland and Wharton give m. p. $\left.62 \cdot 5^{\circ} ;[\alpha]\right]_{D^{\circ}}^{\circ}$ $59 \cdot 36^{\circ}$). Its rotatory dispersion is complex and shows minima in the temperature-rotation curves (compare Frankland and Wharton). Rotations were taken in a l-dcm. column.

Densities determined:

$\begin{gathered} t^{\circ} \\ d_{\mathrm{t}^{\circ}}^{0^{\circ}} \end{gathered}$		16.3	73.95		126.3	158.9 192.9		
		$1 \cdot 1988$	- 1-1498		1-1046	1•0767		1.0477
	$\begin{gathered} d_{+}^{16 \cdot 0^{\circ}}= \\ 1 \cdot 1984 . \end{gathered}$	$\begin{gathered} d_{4}^{25^{\circ}}= \\ 1 \cdot 1905 . \end{gathered}$	$\begin{aligned} & d_{10 \cdot 55^{\circ}}^{18}= \\ & 1 \cdot 1702 . \end{aligned}$	$\begin{aligned} & d_{7_{3} 73^{20}}= \\ & 1 \cdot 1499 . \end{aligned}$	$\begin{aligned} & d_{+0}^{99 \cdot 4^{\circ}}= \\ & 1 \cdot 1275 . \end{aligned}$	$\begin{aligned} & d_{1^{1191^{0}}} \\ & 1 \cdot 1105 . \end{aligned}$	$\begin{aligned} & d_{l^{136}}^{138^{\prime}}= \\ & 1 \cdot 0960 . \end{aligned}$	$\begin{aligned} & d_{t^{161 \cdot 4^{\circ}}}^{=} \\ & 1 \cdot 0746 . \end{aligned}$
λ.	$[a]_{\lambda}^{16 \cdot 9^{\circ}}$.	$[a]_{\lambda}^{20^{\circ}}$.	$[a]_{\lambda}^{19 \cdot 5}$	$[a]_{\lambda}^{732^{\circ}}$.	$[a]_{\lambda}^{99,4^{\circ}}$.	$[a]_{\lambda}^{1191}{ }^{\circ}$	$[a]^{136} 8^{\circ}$.	$[a]_{\lambda}^{16144^{\circ}}$.
6708	-40.97°	-42.50°	-43.69°	-43.57°	-42.33 ${ }^{\circ}$	-40.63°	-39.34°	-36.49°
6563	43.54	$45 \cdot 11$	$46 \cdot 33$	$46 \cdot 17$	44.73	$43 \cdot 00$	41.51	38.70
6438	45.98	47.63	48.82	48.73	47.09	$45 \cdot 21$	$43 \cdot 63$	$40 \cdot 87$
6152	$52 \cdot 21$	53.99	$55 \cdot 26$	55.00	53.21	51.10	$49 \cdot 24$	46.06
5893	58.91	$60 \cdot 81$	$62 \cdot 18$	61.95	59.82	$57 \cdot 52$	$55 \cdot 27$	51.94
5590	$69 \cdot 23$	71.23	72.75	$72 \cdot 13$	69.61	66.67	64-19	60.51
5324	$80 \cdot 16$	$82 \cdot 28$	83.98	$83 \cdot 22$	$80 \cdot 24$	76.76	73.91	69.72
5086	93.25	95.51	97.39	95.76	$92 \cdot 24$	88.34	84.87	79.76
4861	107.39	109.8	111.86	$110 \cdot 41$	106.00	$101 \cdot 10$	$97 \cdot 44$	91.21
4678	$122 \cdot 40$	$125 \cdot 0$	127.27	$125 \cdot 10$	119.47	114-10	$109 \cdot 40$	102.48
4455	144.60	$147 \cdot 4$	150.0	146.0	137.70	131.56	125.70	117.74
	3 K							

Ethyl Thionyltartrate.-The most satisfactory method investigated for the preparation of this compound was that given by Schiller (Ber., 1909, 42, 2017). The following method of purification was adopted. The mixture, after reaction, was washed repeatedly with water, shaken eight times with 1% sodium carbonate solution, again washed repeatedly with water, dried in ether (anhydrous sodium sulphate) and fractionated in a vacuum. After 9 fractionations, a 3-dcm. column of the compound on comparison with a 3 -dom. column of ethyl tartrate, showed practically no colour (Found: C, 37.91; $\mathrm{H}, 4.72$; $\mathrm{S}, 12.8$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{7} \mathrm{~S}: \mathrm{C}, 38.07 ; \mathrm{H}, 4.80 ; \mathrm{S}$, $12 \cdot 71 \%$).

The data available for this ester are as follows:

McKenzie and Barrow
(J., 1911, 89, 1910) ... $160^{\circ} / 12 \mathrm{~mm} . \quad a_{D}^{19 \cdot 5^{\circ}}-244 \cdot 3^{\circ} \quad[a]_{D^{-19}}^{19}-183 \cdot 8^{\circ}$

Schiller (loc.cit.) $\quad \quad 169^{\circ} / 11 \cdot 5 \mathrm{~mm}$. $[a]_{\mathrm{D}}^{17^{-5}-18^{\circ}}-56.71^{\circ}$
Lee (Thesis, University
of Birmingham, 1912) $\quad 164^{\circ} / 14 \mathrm{~mm} . \quad a_{D}^{20 \cdot 3^{\circ}}-241.5^{\circ}$
Present authors $\quad \quad 159^{\circ} / 11 \mathrm{~mm} . \quad a_{D}^{2173^{\circ}}-241 \cdot 36^{\circ} \quad[a]_{1}^{20} 3^{\circ}-182 \cdot 56^{\circ}$
On standing, the oil acquires a yellow colour and shows a decrease in rotation. The ester shows simple rotatory dispersion. Rotations at lower temperatures were taken in a 3 -dcm. tube, and those at higher temperatures in a 2 -dcm. tube. The formula used for calculating $[\alpha]$ at each temperature is given at the foot of the appropriate columns, and the difference (observed-calculated) is shown in the column headed " Diff."

Densities determined :

$$
d_{4^{\circ}}^{363^{\circ}}=1 \cdot 2796 . \quad d_{4^{\circ}}^{828^{\circ}}=1 \cdot 2496 . \quad d_{4^{\circ}}^{1069^{\circ}}=1 \cdot 2216
$$

$d_{4}^{125}{ }^{\circ}{ }^{\circ}=1 \cdot 2003$.			$d_{4^{\circ}}^{1454^{\circ}}=1 \cdot 1768$.	
λ.	$[a]_{\lambda}^{129 \cdot 2^{\circ}}$.	Diff.	$[a]_{\lambda}^{1454^{+}}$.	Diff.
6869.5	-118.27°	+ 0	$-117 \cdot 28^{\circ}$	$+0.03$
6708			$123 \cdot 63$	$+0.04$
6563	$130 \cdot 89$	-0.01	129.72	$\underline{+}$
6364			138.95	- 0
6152	$151 \cdot 40$	-0.03	$149 \cdot 95$	+0.01
5893	166.94	-0.03	$165 \cdot 33$	+0.01
5590	$188 \cdot 65$	$+0.01$	$186 \cdot 76$	$+0.07$
5461			$197 \cdot 12$	± 0
5324	211.60	$+0.04$	$209 \cdot 34$	+0.10
5086	$235 \cdot 98$	-0.05	$233 \cdot 28$	-0.03
4861	$263 \cdot 51$	-0.05	$260 \cdot 34$	-0.01
4678	$289 \cdot 87$	-0.06	$286 \cdot 21$	± 0
4472	$325 \cdot 12$	-0.06	$320 \cdot 72$	$+0.11$
4359	347-38	-0.03	342-30	$-0 \cdot 11$
$a]^{125 \cdot 2^{\circ}}=-\frac{50 \cdot 564}{0.044}$			$[a]^{145} 4^{\circ}=-\frac{50.275}{\lambda^{2}-0.0431}$	

At 149° a decrease of rotation $\alpha_{5086}=0.03^{\circ}$ was noted.
Ethyl Dichlorosuccinate.-This ester was prepared by the method given by Lee (loc. cit.) from the ethyl thionyl ester, using pyridine hydrochloride as a catalyst (1 mol . thionyl ester, freshly prepared; 1 mol. thionyl chloride; and 2 mols. pyridine hydrochloride; heated together for 8 hours on a water-bath at 100°). The resulting oil was washed repeatedly with water, taken up in ether, dried over sodium sulphate, and fractionated in a vacuum eight times; b. p. $128^{\circ} / 12-13 \mathrm{~mm} . ; \alpha_{\mathrm{D}}^{20^{\circ}}-52.54^{\circ}$ (Found: $\mathrm{Cl}, 28.7$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Cl}_{2}$: $\mathrm{Cl}, 29 \cdot 18 \%$). On standing, racemisation or loss of hydrogen chloride takes place and the rotation decreases; the ester cannot then be brought up to its original rotation by vacuum fractionation. The ester shows simple rotatory dispersion. Rotations were taken in a 2 -dcm. tube.

Densities determined :

$[a]_{\lambda}^{22 \cdot 7^{\circ}}=-\frac{12 \cdot 611}{\lambda^{2}-0.04992}[a]_{\lambda}^{22 \cdot 6^{\circ}}=-\frac{12 \cdot 663}{\lambda^{2}-0.04950}[a]_{\lambda}^{41 \cdot 4^{*}}=-\frac{12 \cdot 67}{\lambda^{2}-0.04979}$

$d^{62 \cdot 4^{\circ}}=1 \cdot 1892$.		$d_{4}^{88^{\circ}}{ }^{\circ}=1 \cdot 1613$.	$d_{4^{4}}^{10 \cdot 1^{\circ}}=1.1420$.		
$[a]_{\lambda}^{62 \cdot 3^{\circ}}{ }^{\circ}$.	Diff.	$[a]_{\lambda}^{87^{\circ}}$.	Diff.	$[a]_{\lambda}^{104 \cdot 1^{\circ}}$.	Diff.
$5-29 \cdot 63^{\circ}$	-0.01	-28.84°	-0.01	-28.26°	$+0.01$
$31 \cdot 26$	-0.01	$30 \cdot 46$	$+0.02$	$29 \cdot 83$	$+0.02$
$32 \cdot 84$	-0.01	31.98	± 0	31-34	$+0.01$
$35 \cdot 20$	-0.02	$34 \cdot 31$	± 0	$33 \cdot 62$	+0.01
$38 \cdot 04$	-0.03	$37 \cdot 15$	$+0.06$	36.34	± 0
$42 \cdot 05$	-0.01	$41 \cdot 01$	$+0.01$	$40 \cdot 17$	± 0
47-74	$+0.10$	$46 \cdot 48$	$+0.01$	$45 \cdot 55$	$+0.03$
$50 \cdot 35$	-0.02	$49 \cdot 16$	$+0.01$	$48 \cdot 16$	± 0
$53 \cdot 57$	$+0.01$	$52 \cdot 30$	$+0.02$	$51 \cdot 25$	∓ 0.02
$59 \cdot 90$	-0.02	$58 \cdot 53$	± 0	57-39	$+0.03$
$67 \cdot 11$	± 0	$65 \cdot 61$	$=0.01$	$64 \cdot 34$	$+0.02$
$74 \cdot 05$	∓ 0.01	$72 \cdot 46$	± 0	71.03	± 0.00
$83 \cdot 36$	$+0.02$	81.68	$+0.03$	80.07	± 0.00
$89 \cdot 31$	$+0.03$	87.53	± 0	85.81	-0.03

$$
[a]_{\lambda}^{66^{2 \cdot} \cdot}=-\frac{12.508}{\lambda^{2}-0.04991}[a]_{\lambda}^{8 \tau^{*}}=-\frac{12 \cdot 131}{\lambda^{2}-0.05141}[a]_{\lambda}^{10+1^{\circ}}=-\frac{11.876}{\lambda^{2}-0.05165}
$$

At 122.9° an increase of rotation $a_{5154}=0.33^{\circ}$ was noted, which indicated decomposition, and comparison of abserved with calculated values showed the rotatory dispersion still to be simple.

Methyl Tartrate.-This ester was prepared from Kahlbaum's methyl alcohol by the continuous esterification process mentioned under ethyl tartrate (150 g . tartaric acid; 14 hrs ; oil-bath at $120-125^{\circ}$). It was fractionated in vacuum six times, and had b. p. $165-166^{\circ} / 11.5 \mathrm{~mm} .$, m. p. 48°. Rotations were taken in a 2 -dcm. tube.
Densities determined :

t°			29.5	53.3	67.8	88.3	122.9	138.9
d_{1}^{t}	$\ldots \ldots$	1.3232	1.2985	1.2836	1.2624	1.2263	1.2093	1.1770

		$d_{4{ }^{17}{ }^{10}{ }^{\circ}}$	apolated	$d^{34}{ }^{3} 9^{0}=$		
		$=1.3356$		1-3180.		
	λ.	$[a]_{\lambda}^{1777^{\circ}}$.		$[a]_{\lambda}^{3+9}{ }^{\circ}$.		
	6708	$+2 \cdot 32^{\circ}$		$3 \cdot 45^{\circ}$		
	6563	$2 \cdot 36$		$3 \cdot 49$		
	6438	$2 \cdot 34$		$3 \cdot 49$		
	6152	$2 \cdot 19$		3.45		
	5893	$1 \cdot 87$		$3 \cdot 28$		
	5590	$1 \cdot 21$		$2 \cdot 84$		
	4359	$-9 \cdot 17$		-5.81	-2.	
	$d_{4}^{8122^{\circ}}=$		$d_{44^{\circ}}^{100 \cdot 8^{\circ}}=$	$d_{4^{24}}^{1249^{\circ}}=$	$d_{4}^{14+88^{\circ}}=$	$d^{162^{2} \cdot 1^{\circ}}=$
	1-2698.	1-2549.	$1 \cdot 2495$.	1-2246.	1-2033.	$1 \cdot 1853$.
λ.	$[a]_{\lambda}^{8122^{\circ}}$.	$[a]_{\lambda}^{96 \cdot 33^{\circ}}$.	$[a]_{\lambda}^{100 \cdot 8^{\circ}}$.	$[a]_{\lambda}^{1249^{2}}$.	$[a]_{\lambda}^{14148^{\circ}}$.	$[a]_{\lambda}^{102 \cdot 1^{\circ}}$.
6708	$+5.18^{\circ}$	$5.54{ }^{\circ}$	$5 \cdot 67^{\circ}$	6.08°	6.33°	$6.51{ }^{\circ}$
6152	$5 \cdot 57$	6.02	$6 \cdot 21$	6.79	$7 \cdot 18$	$7 \cdot 43$
5893	$5 \cdot 68$	$6 \cdot 16$	$6 \cdot 36$	$7 \cdot 02$	$7 \cdot 52$	$7 \cdot 87$
5590	$5 \cdot 62$	$6 \cdot 21$	$6 \cdot 43$	$7 \cdot 22$	7.75	$8 \cdot 15$
5324	$5 \cdot 38$	$5 \cdot 99$	6.30	$7 \cdot 16$	$7 \cdot 74$	$8 \cdot 15$
5086		$5 \cdot 55$		$6 \cdot 86$	7.59	$8 \cdot 05$
4359	-0.02	1.21	1.65	$3 \cdot 40$	$4 \cdot 55$	

Methyl Monoacetyltartrate.-The ester was prepared similarly to the ethyl. analogue, and purified as follows: The benzene was removed and the residual oil shaken with 5 c.c. of water and separated. This was repeated twice. The oil was then dissolved in a large volume of water and cooled to 0°; the diacetyltartrate which separated was filtered off, the filtrate extracted with ether, the extract dehydrated over sodium sulphate, the solvent removed, and the residual monoacetyl ester crystallised from benzene to constant rotation and m. p., $82 \cdot 4^{\circ}$. Estimation of acetyl group by Sudborough and Thomas's method (loc. cit.) gave $19 \cdot 3$ (Calc., 19.54\%) (Found: C, $43.55 ; \mathrm{H}, 5.6$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{7}$: C, $43.62 ; \mathrm{H}$, $5 \cdot 49 \%$). Rotations were taken in l-dcm. tube. The ester exhibits anomalous rotatory dispersion.

Densities determined:

Methyl Diacetyltartrate.-The ester was prepared by heating methyl tartrate and acetic anhydride for 3 hours and finally raising it to its boiling point. The excess of acetic anhydride was removed under reduced pressure and the residue poured into water. The compound was purified by vacuum distillation and recrystallisation from aqueous alcohol; m. p. 106.5°; $\alpha_{\mathrm{D}}^{1073^{\circ}}-9.01^{\circ}$ (Found: C, $45 \cdot 65 ; \mathrm{H}, 5 \cdot 23$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{8}: \mathrm{C}, 45 \cdot 8 ; \mathrm{H}, 5 \cdot 38 \%$). Freundler (Compt. rend., 1892, 115, 509 ; Bull. Soc. chim., 1894, [3], 11, 305) gave m. p. 103° and determined the rotation in alcoholic solution. The dispersion curves are complex and anomalous; crossing of the zero axis takes place towards the red end of the spectrum for the highest temperature. Rotations were taken in a l-dem. tube.

Densities determined:

t°	$\ldots \ldots \ldots \ldots \ldots \ldots$	113	$134 \cdot 1$	143.5	157	181
$d_{t^{\circ}}^{1 \circ}$	$\ldots \ldots \ldots \ldots \ldots$.	$1 \cdot 1407$	$1 \cdot 1150$	$1 \cdot 1034$	1.0868	1.0575

	$d_{4}{ }^{10 \times 3} 3^{\circ}=$	$d_{4^{\circ}}^{128.33^{\circ}}=$	$d_{4}^{1433^{\circ}}=$	$d_{4}^{171 \cdot 5^{\circ}}=$	$d_{44^{8}}^{178 \cdot 3^{\circ}}=$
	1-1480.*	$1 \cdot 1220$.	1-1036.	$1 \cdot 0689$.	$1 \cdot 0609$.
λ.	$[a]_{\lambda}^{10733^{\circ}}$.	$[a]_{\lambda}^{128} 3^{\circ}$.	$[a]_{\lambda}^{143 \cdot 3^{\circ}}$.	$[a]_{\lambda}^{171 \cdot 5^{\circ}}$.	$[a]_{\lambda}^{1783^{\circ}}$.
6708	$-5 \cdot 20^{\circ}$	$-3 \cdot 96{ }^{\circ}$	-2.85°	-0.12°	$+0.75^{\circ}$
6563	$5 \cdot 53$	$4 \cdot 27$	3.06	$0 \cdot 19$	$+0.70$
6463	$5 \cdot 87$	$4 \cdot 54$	$3 \cdot 28$	$0 \cdot 23$	$+0.59$
6152	6.83	$5 \cdot 35$	$3 \cdot 91$	$0 \cdot 52$	$+0.39$
5893	$7 \cdot 85$	$6 \cdot 22$	$4 \cdot 65$	$0 \cdot 84$	$+0 \cdot 10$
5590	$9 \cdot 32$	$7 \cdot 41$	$5 \cdot 72$	$1 \cdot 64$	-0.56
5324	11.14	$8 \cdot 89$	$6 \cdot 98$	$2 \cdot 48$	-1.24
5086	$13 \cdot 21$	$10 \cdot 62$	$8 \cdot 42$	$3 \cdot 46$	$-2 \cdot 16$
4861	$15 \cdot 83$	$12 \cdot 75$	$10 \cdot 06$	$4 \cdot 74$	$-3 \cdot 33$
4678	$18 \cdot 21$	14.85	11.92	$6 \cdot 10$	-4.57
4455	$21 \cdot 67$	17.99			$-6 \cdot 76$

Methyl Monobenzoyltartrate.-This was prepared by slowly adding benzoyl chloride (l equiv.) to a stirred mixture of methyl tartrate and petroleum ether (b. p. $60-80^{\circ}$), the mixture then being boiled under reflux for 5 days. The petroleum ether was decanted and the layer of residual oil dissolved in benzene, treated with sodium carbonate solution, washed with water, dried over anhydrous sodium sulphate, and the benzene removed. The oil thus obtained was extracted with hot water and the solution filtered. The cold aqueous solution of the required ester was then extracted with ether, and when the latter was removed, the product solidified and was recrystallised from benzene; m. p. 78° (Found : C, $55 \cdot 22 ; \mathrm{H}, 4.8$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{7}$: C, $55 \cdot 3 ; \mathrm{H}, 4.9 .9 \%$). Rotations were taken in a l-dcm. tube. The ester exhibits anomalous rotatory dispersion.

Densities determined :

$\begin{array}{cc} t^{\circ} & \ldots . . . \\ d_{t^{\circ}}^{\prime 0} & \ldots . . \end{array}$	50.5 1.2487	$\begin{aligned} & 79 \cdot 6 \\ & 1 \cdot 2204 \end{aligned}$	93.5 $127 \cdot 4$ $1 \cdot 2065$ $1 \cdot 1729$	$\begin{aligned} & 146 \cdot 1 \\ & 1 \cdot 1533 \end{aligned}$	158
	$d^{22^{\circ}}=$	$d_{t^{\circ}}^{37^{\circ}}=$	$d_{4^{80} \cdot 9^{\circ}}^{=}=$	$d_{4}^{125}{ }^{123^{\circ}}=$	$d^{150^{\circ}{ }^{\circ}}=$
	$1 \cdot 2780$.	1.2430 .	. $1 \cdot 2192$	$1 \cdot 1744$.	$1 \cdot 1427$.
λ.	$[a]_{\lambda}^{722^{\circ}}$.	$[a]_{\lambda}^{55^{\circ}}$.	$[a]_{\lambda}^{30 \cdot 8^{\circ}}$.	$[a]_{\lambda}^{125 \%}$.	$[a]_{\lambda}^{157^{\circ}}$.
6708	$+4 \cdot 13^{\circ}$	$4 \cdot 63^{\circ}$	4.99°	$4.91{ }^{\circ}$	4.90°
6563	$4 \cdot 13$	$4 \cdot 73$	$5 \cdot 09$	5.06	$5 \cdot 05$
6438	$4 \cdot 10$	$4 \cdot 80$	$5 \cdot 18$	$5 \cdot 18$	$5 \cdot 16$
6152	$4 \cdot 01$	$4 \cdot 87$	$5 \cdot 27$	$5 \cdot 35$	$5 \cdot 36$
5893	$3 \cdot 85$	$4 \cdot 78$	$5 \cdot 21$	$5 \cdot 40$	$5 \cdot 44$
5589	$3 \cdot 51$	$4 \cdot 51$	$5 \cdot 00$	$5 \cdot 40$	$5 \cdot 45$
5461	$3 \cdot 30$	$4 \cdot 33$	$4 \cdot 84$	$5 \cdot 30$	$5 \cdot 37$
5324	$2 \cdot 93$	$4 \cdot 06$	$4 \cdot 65$	$5 \cdot 14$	$5 \cdot 22$
5086	1.85	$3 \cdot 15$	$3 \cdot 91$	$4 \cdot 56$	$4 \cdot 73$
4861	$0 \cdot 41$	$2 \cdot 01$	$2 \cdot 80$	$3 \cdot 67$	$4 \cdot 03$
4678	-1.05	$0 \cdot 48$	$1 \cdot 31$	$2 \cdot 63$	$3 \cdot 19$
4455	$-3 \cdot 46$	-1.65	-0.60	$1 \cdot 04$	1.91
4359	-4.38	$-2 \cdot 48$	-1.40	$0 \cdot 20$	$1 \cdot 21$

Methyl Dibenzoyltartrate.-This was prepared by the method described by Frankland and Wharton (J., 1896, 69, 1583). (Found : C, $62 \cdot 1 ; \mathrm{H}, 4.78$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{8}$: C, $62.15 ; \mathrm{H}, 4.7 \%$). Comparative data are :

Frankland and Wharton. Present authors.

M. p	$135.5{ }^{\circ}$	$135.5{ }^{\circ}$
$d^{150}{ }^{150}$	$1 \cdot 1285$	$1 \cdot 1306$
$d_{40^{\circ}}^{160^{\circ}}$	1-1191	1-1223
[a] $]_{\text {din }}{ }^{\text {a }}$	-66.84°	$-64.2{ }^{\circ}$

Rotations were taken in a l-dcm. tube. The ester exhibits complex rotatory dispersion.

Densities determined :

t°	$140 \cdot 6$	$153 \cdot 7$	$166 \cdot 2$
d^{10} (10.	$1 \cdot 1384$	$1 \cdot 1276$	$1 \cdot 1171$
	$d_{4^{\circ}}^{1355^{\circ}}=1 \cdot 1428$.	$d^{162 \cdot 5}{ }^{10}{ }^{\circ}=1 \cdot 1285$.	
λ.	$[a]_{\lambda}^{135} 4^{\circ}$.	$[a]_{\lambda}^{152 \cdot 5^{\circ}}$	
6708	$-45 \cdot 78^{\circ}$	$-43 \cdot 03^{\circ}$	
6563	$48 \cdot 23$	$45 \cdot 51$	
6438	50.88	47.78	
6152	$57 \cdot 42$	53.95	
5893	$64 \cdot 51$	$60 \cdot 59$	
5590	$74 \cdot 69$	69.95	
5461	$79 \cdot 96$	$74 \cdot 79$	
5324	$85 \cdot 76$	$80 \cdot 34$	
5086	97.95	91.57	
4861	$112 \cdot 18$	$104 \cdot 60$	
4678	$126 \cdot 13$	118.01	
4455	$145 \cdot 68$	$137 \cdot 88$	
4359	153.5	147.11	

Summary.

(1) Inflexion and maxima are confined to the positive region of rotation, and crossing of the axis, $d \alpha / d \lambda$, is positive for methyl and
ethyl d-tartrates and those derivatives of the two esters which exhibit anomalous rotatory dispersion.
(2) The occurrence of anomalous rotatory dispersion is an indication of the relative configuration.
(3) The explanation of anomaly by consideration of ultra-violet terms only is incomplete. A view has been put forward postulating an infra-red term in the Drude equation. The term is negative for a compound of relative configuration " d." This term, though its contribution may be small compared with rotation of electronic origin, is necessary, for it controls (a) the association of the highfrequency constant with the positive ultra-violet term, and (b) the final course of the path to the infra-red band in the positive region.
(4) The consideration of anomaly involves both the superposition rule (Lowry, loc. cit.), and also Wood's interpretation of Drude's view of spurious anomaly; for the dispersion occurs between two bands, the low-frequency band in the ultra-violet, and the infra-red band, and not merely outside the ultra-violet bands (longer wavelength side), the infra-red band being neglected.
(5) Quartz is taken as an illustration of the importance of the infra-red term.
(6) By an extension of Thomson's view, a single asymmetric centre can give rise to anomaly.
(7) Different classes of anomalous rotatory dispersion are discussed.

The authors wish to thank J. Liquier-Milward, D. ès Sc. (Paris), for calling attention to relevant papers, for her helpful criticism, for very considerable assistance from her point of view as a physicist, and for her great interest. They are also indebted to Mr. C. H. F. Fuller for his help in calibrating the optical instruments and also for repeating the work on certain compounds.

[^3][Received, July 26th, 1927.]

[^0]: * The dispersion curve for the same compound in ethylene dibromide does not cross the axis in the visible region, and extrapolation by means of the two-term equation shows that crossing of the zero axis does not occur, but that the dispersion curve becomes asymptotic to the zero axis in the negative region.

[^1]: * The compound investigated was lævorotatory, i.e., of opposite relative configuration.

[^2]: * "Anomalous" should be interpreted to include also "spurious anomalous," which is defined by Frankland (Trans. Faraday Soc., 1914, 10, 9.1).

[^3]: University of Birmingham, Edgbaston.

